Optimization of injection molding process parameters using integrated artificial neural network model and expected improvement function method

نویسندگان

  • Huizhuo Shi
  • Yuehua Gao
  • Xicheng Wang
چکیده

In this study, an adaptive optimization method based on artificial neural network model is proposed to optimize the injection molding process. The optimization process aims at minimizing the warpage of the injection molding parts in which process parameters are design variables. Moldflow Plastic Insight software is used to analyze the warpage of the injection molding parts. The mold temperature, melt temperature, injection time, packing pressure, packing time, and cooling time are regarded as process parameters. A combination of artificial neural network and design of experiment (DOE) method is used to build an approximate function relationship between warpage and the process parameters, replacing the expensive simulation analysis in the optimization iterations. The adaptive process is implemented by expected improvement which is an infilling sampling criterion. Although the DOE size is small, this criterion can balance local and global search and tend to the global optimal solution. As examples, a cellular phone cover and a scanner are investigated. The results show that the proposed adaptive optimization method can effectively reduce the warpage of the injection molding parts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization of Plastic Injection Molding Process by Combination of Artificial Neural Network and Genetic Algorithm

Injection molding is one of the most important and common plastic formation methods. Combination of modeling tools and optimization algorithms can be used in order to determine optimum process conditions for the injection molding of a special part. Because of the complication of the injection molding process and multiplicity of parameters and their interactive effects on one another, analytical...

متن کامل

Optimization of the injection molding process of Derlin 500 composite using ANOVA and grey relational analysis

Warpage and shrinkage control are important factors in proving the quality of thin-wall parts in injection modeling process. In the present paper, grey relational analysis was used in order to optimize these two parameters in manufacturing plastic bush of articulated garden tractor. The material used in the plastic bush is Derlin 500. The input parameters in the process were selected according ...

متن کامل

Prediction and optimization of load and torque in ring rolling process through development of artificial neural network and evolutionary algorithms

Developing artificial neural network (ANN), a model to make a correct prediction of required force and torque in ring rolling process is developed for the first time. Moreover, an optimal state of process for specific range of input parameters is obtained using Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) methods. Radii of main roll and mandrel, rotational speed of main roll, pr...

متن کامل

STRUCTURAL DAMAGE DETECTION BY MODEL UPDATING METHOD BASED ON CASCADE FEED-FORWARD NEURAL NETWORK AS AN EFFICIENT APPROXIMATION MECHANISM

Vibration based techniques of structural damage detection using model updating method, are computationally expensive for large-scale structures. In this study, after locating precisely the eventual damage of a structure using modal strain energy based index (MSEBI), To efficiently reduce the computational cost of model updating during the optimization process of damage severity detection, the M...

متن کامل

Decision Support for IC Molding Parameter Settings Using Grey Relational Analysis and Neural Network

In order to be competitive in the semiconductor manufacturing industry, quality improvement and yield enhancement have received increasing attention. The research focuses on the molding process of Integrated Circuit (IC) assembly. The defects often occurred in molding process include hole, vein, crack, and floss. In order to raise the yield of molding process, the study applies the Taguchi meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010